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Abstract Formulation of locally conservative least-squares finite element methods (LS-
FEM) for the Stokes equations with the no-slip boundary condition has been a long stand-
ing problem. Existing LSFEMs that yield exactly divergence free velocities require non-
standard boundary conditions [5], while methods that admit the no-slip condition satisfy
the incompressibility equation only approximately [6, Chapter 7]. Here we address this
problem by proving a new non-standard stability bound for the velocity-vorticity-pressure
Stokes system augmented with a no-slip boundary condition. This bound gives rise to
a norm-equivalent least-squares functional in which the velocity can be approximated by
div-conforming finite element spaces, thereby enabling a locally-conservative approxima-
tions of this variable. We also provide a practical realization of the new LSFEM using
high-order spectral mimetic finite element spaces [24] and report several numerical tests,
which confirm its mimetic properties.

1. Introduction

In this paper we consider least-squares finite element methods (LSFEMs) for the velocity-
vorticity-pressure (VVP) formulation of the Stokes problem

(1)


∇ × ω + ∇p = f in Ω

∇ × u − ω = 0 in Ω

∇ · u = 0 in Ω

,

where u denotes the velocity, ω the vorticity, p the pressure and f the force per unit
mass. Our main focus is on the formulation of conforming LSFEMs that are (i) locally
conservative, and (ii) provably stable when the system (1) is augmented with the no-slip
(velocity) boundary condition

(2) u = 0 on ∂Ω.

Note that (2) is equivalent to a pair of boundary conditions

(3) u · n = 0 and u × n = 0 on ∂Ω ,

for the normal and tangential components of the velocity field, respectively.
Two factors motivate the choice of (1) as a foundation for our method. Using first-order

systems has been a staple in least-squares formulations because it allows one to reduce the
regularity requirement on the finite element spaces as well as the condition number of the
resulting algebraic problems. A second consideration is the practical importance of the
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vorticity variable in applications where rotational flow dominates the flow dynamics, such
as rotor aerodynamics, the flow around wind turbines or wake flows. Methods that can
directly control and possibly reduce the error in the vorticity can be of significant value in
these applications.

Formulation of conforming LSFEMs that satisfy both (i) and (ii) had been a long-
standing challenge. Existing conforming least-squares methods generally fall into one
of the following two categories. The LSFEMs in the first category, see e.g., [4, 10], are
stable and accurate for (1) with the boundary condition (2) but satisfy ∇ · u = 0 only ap-
proximately. Conversely, the LSFEMs in the second category; see, e.g., [5], [6, Chapter 7]
yield exactly divergence free velocity fields but require the non-standard normal velocity,
tangential vorticity boundary condition

(4) u · n = 0 and ω × n = 0 on ∂Ω ,

i.e., they specify only the first of the two velocity conditions in (3).
Thus far, achieving both stability and exact mass conservation with the velocity bound-

ary condition has been only possible by switching to a non-conforming formulations such
as the discontinuous LSFEMs in [8] and [9], or by employing Lagrange multipliers to
enforce mass conservation [15]. Of course the latter negates some of the attractive prop-
erties of least-squares methods such as symmetric and positive definite algebraic systems,
while the former requires careful selection of mesh-dependent weights for the various jump
terms and can result in higher condition numbers. In either case, the resulting least-squares
methods tend to be less attractive computationally. It should be mentioned that mass con-
servation in least-squares methods can be strengthened although not satisfied exactly by
employing an additional weight for the residual of the continuity equation [16]. Although
this approach can partially mitigate the loss of mass conservation it tends to increase the
condition number of the resulting system and to reduce the accuracy with which the for-
mulation satisfies the rest of the equations.

In this paper we address formulation of conservative LSFEMs for the VVP Stokes sys-
tem with (2) by developing a new, non-standard a priory stability bound for this problem.
We refer to this bound as “non-standard” because (i) it uses a “weaker” L2-norm to mea-
sure the residual of the momentum equation in (1), instead of a conventional Sobolev space
norm, and (ii) it employes a weak curl in the second equation of (1) and a weak grad oper-
ator in the first equation of (1). This stability bound gives rise to a norm-equivalent func-
tional, which can be discretized by using div-conforming elements for the velocity field.
We show that the resulting LSFEM is both locally conservative and stable for (1)–(2).

We have organized the rest of the paper as follows. Section 2 introduces notation and
some necessary background results. Section 3 establishes a non-standard stability bound
for the VVP system and Section 4 presents the associated least-squares formulation. Sec-
tion 5 describes the compatible (mimetic) spectral element spaces, which we use to dis-
cretize the least-squares principle and explains how all necessary differential operators can
be expressed by operations on the associated degrees-of-freedom. We present numerical
results in Section 6 and conclude with some remarks in Section 7.

2. Preliminaries

In what follows Ω ⊂ Rd, d = 2, 3 is a bounded open region with Lipschitz boundary
Γ = ∂Ω. We recall the space L2(Ω) of all square integrable functions with norm and
inner product denoted by ‖ · ‖0 and (·, ·)0, respectively, and its subspace L2

0(Ω) of all square
integrable functions with a vanishing mean. The spaces H(curl,Ω) and H(div,Ω) contain
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square integrable functions whose curl and divergence are also square integrable. When
equipped with the graph norms

‖ξ‖2curl := ‖ξ‖20 + ‖∇ × ξ‖20 and ‖v‖2div := ‖v‖20 + ‖∇ · v‖20 ,

the spaces H(curl,Ω) and H(div,Ω) are Hilbert spaces. We recall the subspaces

H0(curl,Ω) = {v ∈ H(curl,Ω) |v × n = 0 on ∂Ω} ,

H0(div,Ω) = {v ∈ H(div,Ω) |v · n = 0 on ∂Ω} ,

of H(curl,Ω) and H(div,Ω), respectively containing functions whose tangential and nor-
mal traces vanish on the boundary.

2.1. Adjoint operators. The mimetic least-squares method in this paper requires two ad-
ditional operators acting on L2(Ω) and H(div,Ω) functions. Their definition follows.

Definition 1. The adjoint gradient of p ∈ L2(Ω) is the function ∇∗p ∈ H(div,Ω), which
satisfies the relation

(5) (∇∗p,v)0 := (p,−∇ · v)0 +

∫
∂Ω

p(v · n) dS , ∀v ∈ H(div,Ω) .

The adjoint gradient defines a map ∇∗ : L2(Ω) 7→ H(div,Ω).
The adjoint curl of v ∈ H(div,Ω) is the function ∇∗ × v ∈ H(curl,Ω), which satisfies

the relation

(6) (∇∗ × v, ξ)0 := (v,∇ × ξ)0 −

∫
∂Ω

v · (n× ξ) dS , ∀ξ ∈ H(curl,Ω) .

The adjoint curl defines a map ∇∗× : H(div,Ω) 7→ H(curl,Ω).

Whenever the test functions in (5) and (6) are restricted to H0(div,Ω) and H0(curl,Ω),
respectively, there holds

(7) (∇∗p,v)0 := (p,−∇ · v)0 ∀v ∈ H0(div,Ω),

and

(8) (∇∗ × v, ξ)0 := (v,∇ × ξ)0 ∀ξ ∈ H0(curl,Ω) ,

respectively.

2.2. The velocity space and its decomposition. An appropriate starting point in the de-
velopment of locally conservative least-squares finite element methods for (1)–(2) is to
consider the velocity as an element of H(div,Ω). By further restricting the velocity to
H0(div,Ω) we can subsume the first of the two boundary conditions in (3) into the space
definition. However, since H(div,Ω) functions are not guaranteed to have a well-defined
tangential trace, the second, tangential boundary condition can only be imposed in a weak,
variational sense. Thus, in what follows we shall seek the velocity solution in the following
subspace of H(div,Ω):

D =

{
v ∈ H0(div,Ω)

∣∣∣ ∫
∂Ω

v · (n× ξ) dS = 0 , ∀ξ ∈ H(curl,Ω)
}
.

We note that for any v ∈ D there holds

(9) (∇∗ × v, ξ)0 := (v,∇ × ξ)0 ∀ξ ∈ H(curl,Ω) .
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In this work we use the Hodge-Morrey-Friedrichs decomposition of vector fields; see,
e.g., [29, Theorem 2.4.2, p.81], [21], and [2]. This result states that every vector field
v ∈ L2(Ω)d has an L2-orthogonal decomposition

(10) v = vc + vd + h,

into an irrotational, a solenoidal and a harmonic component such that ∇ × vc = 0, ∇ · vd = 0 in Ω

n× vc = 0, n · vd = 0 on Γ
and

 ∇ × h = 0

∇ · h = 0
in Ω.

The harmonic component h can be further decomposed as

(11) h = hc + hd, n× hc = 0 and n · hd = 0 on Γ.

By combining the terms from (10) and (11) we obtain an alternative decomposition

(12) v = ṽc + ṽd

in which the irrotational and the solenoidal components are given by

ṽc = vc + hc and ṽd = vd + hd,

respectively. We note that unlike (10) the decomposition (12) is not L2-orthogonal and so
we refer to the latter as the algebraic decomposition of v.

Given a vector field v ∈ H(div,Ω) it is straightforward to show that its algebraic de-
composition satisfies{

n · ṽc = n · v
n× ṽc = 0

and
{

n · ṽd = 0
n× ṽd = n× v

,

where the tangential boundary conditions are understood in a weak sense. It follows that
for any v ∈ D there holds

(13) v = ṽc + ṽd, ṽc, ṽd ∈ D.

In other words, both components of the algebraic decomposition of a vector field v ∈ D
belong in the same space as v. Therefore, we can writeD as an algebraic sum

(14) D = Dc +Dd

of an irrotational subspaceDc and a solenoidal subspaceDd.

3. Non-standard stability bound

In this section we establish an a priori stability bound for the VVP Stokes system (1)
with the no-slip boundary condition (3). The proof draws upon the techniques in [5] with
one important distinction. Stability proof in that paper relies on the orthogonality between
∇ × ω and ∇∗p when ω has a vanishing tangential component, i.e., the fact that

(15) (∇ × ω,∇∗p) = 0 ∀ω ∈ H0(curl,Ω) and p ∈ L2(Ω) .

This implies a trivial lower bound (in fact an identity) for the L2-norm of the residual of
the momentum equation

(16) ‖∇ × ω + ∇∗p‖20 ≥ ‖∇ × ω‖
2
0 + ‖∇∗p‖20 ,

which represents a key juncture in the proof.
However, for the case of the no-slip boundary condition of interest to us, for ω ∈

H(curl,Ω) the field ∇ × ω is not orthogonal to ∇∗p. As a result, (15), resp. (16) do
not hold. Nonetheless, using the algebraic decomposition (14) of the velocity space D we
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are able to prove an analogous result, but in a “weaker” L2-norm. We define this norm for
any u ∈ H(div,Ω) according to

(17) ‖u‖D = sup
v∈D

(u,v)0

‖v‖0
.

SinceD ⊂ L2(Ω)d the norm (17) can indeed be thought of as a “weaker” L2-norm.
Our proof relies critically upon the fact that, although the components of the algebraic

decomposition (14) are not mutually orthogonal, they are orthogonal to the ranges of ∇×
and ∇∗, respectively, i.e., for any ω ∈ H(curl,Ω) and p ∈ L2(Ω) there holds

(∇ × ω,vc)0 = 0 ∀vc ∈ Dc and (∇∗p,vd)0 = 0 ∀vd ∈ Dd,

respectively. Among other things, this orthogonality implies that

(18) ‖∇ × ω‖D = sup
v∈D

(∇ × ω,v)0

‖v‖0
= sup
vd∈Dd

(∇ × ω,vd)0

‖vd‖0
,

for all ω ∈ H(curl,Ω), and that

(19) ‖∇∗p‖D = sup
v∈D

(∇∗p,v)0

‖v‖0
= sup
vc∈Dc

(∇∗p,vc)0

‖vc‖0

for all p ∈ L2(Ω). Using (18)–(19) the following theorem establishes a stability bound
similar to (16) but in terms of the weaker L2-norm defined by (17).

Theorem 1. For all ω ∈ H(curl,Ω) and all p ∈ L2(Ω) there holds

(20) ‖∇ × ω + ∇∗p‖2D ≥
1
2
‖∇ × ω‖2D +

1
2
‖∇∗p‖2D .

Proof. In order to bound the left-hand side in (20) from below we first use that Dd is a
subspace ofD together with the fact that ∇∗p ⊥ Dd and (18) to obtain

‖∇ × ω + ∇∗p‖D = sup
v∈D

(∇ × ω + ∇∗p,v)0

‖v‖0
≥ sup
vd∈Dd

(∇ × ω + ∇∗p,vd)0

‖vd‖0

= sup
vd∈Dd

(∇ × ω,vd)0

‖vd‖0

(18)
= ‖∇ × ω‖D .(21)

Similarly, using that Dc is a subspace of D together with ∇ × ω ⊥ Dc and (19) yields the
bound

‖∇ × ω + ∇∗p‖D = sup
v∈D

(∇ × ω + ∇∗p,v)0

‖v‖0
≥ sup
vc∈Dc

(∇ × ω + ∇∗p,vc)0

‖vc‖0

= sup
vc∈Dc

(∇∗p,vc)0

‖vc‖0

(19)
= ‖∇∗p‖D .(22)

Squaring both sides of the bounds in (21–22) preserves the sense of the inequality. Com-
bination of the squared bounds then completes the proof:

‖∇ × ω + ∇∗p‖2D =
1
2
‖∇ × ω + ∇∗p‖2D +

1
2
‖∇ × ω + ∇∗p‖2D

(21,22)
≥

1
2
‖∇ × ω‖2D +

1
2
‖∇∗p‖2D .

�

To state the main result of this section we introduce the “weak” H(curl,Ω) norm

‖ω‖2C := ‖ω‖20 + ‖∇ × ω‖2D.
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Theorem 2. There exists a constant C > 0 such that

‖∇ × ω + ∇∗p‖2D + ‖ω − ∇∗ × u‖20 + ‖∇ · u‖20 ≥ C
{
‖ω‖2C + ‖u‖div + ‖∇∗p‖2D

}
.

for every u ∈ D, ω ∈ H(curl,Ω) and p ∈ L2
0(Ω).

Proof. The proof follows the ideas in [5]. We have

(23) ‖∇∗ × u − ω‖20 = ‖∇∗ × u‖20 + ‖ω‖20 − 2(∇∗ × u, ω)0.

To bound the last term we split it in two equal parts. On the one hand, the Cauchy-Schwartz
inequality gives the bound

(∇∗ × u, ω)0 ≤ ‖∇
∗ × u‖0‖ω‖0 .

On the other hand, by taking into account that u ∈ D, using the identity (9) and the
definition of the weak semi norm (18) we obtain

(∇∗ × u,ω)0 = (u,∇ × ω)0 ≤ ‖u‖0‖∇ × ω‖D.

Using the last two inequalities in (23) then gives the bound

‖∇∗ × u − ω‖20 ≥ ‖∇
∗ × u‖20 + ‖ω‖20 − ‖∇

∗ × u‖0‖ω‖0 − ‖u‖0‖∇ × ω‖D .

Application of the ε-inequality to the last two terms gives

‖∇∗ × u − ω‖20

≥

(
1 −

δ

2

)
‖∇∗ × u‖20 +

(
1 −

1
2δ

)
‖ω‖20 −

ε

2
‖u‖20 −

1
2ε
‖∇ × ω‖2D ,(24)

while the Poincaré-Friedrichs inequality [6, Theorems A.10-A.11]

(25) ‖∇∗ × u‖20 + ‖∇ · u‖20 ≥
1

C2
P

‖u‖20 ,

allows us to conclude that

‖∇∗ × u − ω‖20 + ‖∇ · u‖20 ≥
1
2

(1 − δ) ‖∇∗ × u‖20 +
1
2
‖∇ · u‖20

+

(
1 −

1
2δ

)
‖ω‖20 +

1
2

 1
C2

P

− ε

 ‖u‖20 − 1
2ε
‖∇ × ω‖2D .(26)

Adding β times the momentum equation and using Theorem 1 yields

β‖∇ × ω+∇∗p‖2D + ‖∇∗ × u − ω‖20 + ‖∇ · u‖20

≥
1
2

(1 − δ) ‖∇∗ × u‖20 +
1
2
‖∇ · u‖20 +

(
1 −

1
2δ

)
‖ω‖20+

1
2

 1
C2

P

− ε

 ‖u‖20 +
1
2

(
β −

1
ε

)
‖∇ × ω‖2D +

β

2
‖∇∗p‖2D .(27)

Choosing ε = 1/C2
P, δ = 2/3 and β = 1 + C2

P then gives

(1 + C2
P)‖∇ × ω + ∇∗p‖2D + ‖∇∗ × u − ω‖20 + ‖∇ · u‖20

≥
1
6
‖∇∗ × u‖20 +

1
2
‖∇ · u‖20 +

1
4
‖ω‖20 +

1
2
‖∇ × ω‖2D +

1
2

(
1 + C2

P

)
‖∇∗p‖2D(28)

≥ min
{

1
6
,

1
2

(
1 + C2

P

)} (
‖ω‖2C + ‖u‖2div + ‖∇∗p‖2D

)
.
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It follows that

‖ω − ∇∗ × u‖20 + ‖∇ × ω + ∇∗p‖2D + ‖∇ · u‖20

≥
1

1 + C2
P

[
(1 + C2

P)‖∇ × ω + ∇∗p‖2D + ‖∇∗ × u − ω‖20 + ‖∇ · u‖20
]
,(29)

which completes the proof. �

4. A least-squares principle

The stability bound in Theorem 2 asserts that

(30) J(ξ,v, q;f ) :=
1
2

(
‖∇∗ × v − ξ‖20 + ‖∇ × ξ + ∇∗q − f‖2D + ‖∇ · v‖20

)
is a norm-equivalent least-squares functional for (ξ,v, q) ∈ X = H(curl,Ω) × D × L2

0(Ω).
It follows that the least-squares principle

(31) (ω,u, p) = arg min
(ξ,v,q)∈X

J(ξ,v, q;f )

is a well-posed minimization problem; see [6]. By setting the first variations ofJ(ξ,v, q;f )
with respect to ξ, v and q to zero we obtain the associated Euler-Lagrange equation for
(31): seek (ω,u, p) ∈ X such that

(32)

(∇ × ω + ∇∗p,∇ × ξ)D + (ω − ∇∗ × u, ξ)0 = (f ,∇ × ξ)D ∀ξ ∈ H(curl,Ω)

(∇∗ × u − ω,∇∗ × v)0 + (∇ · u,∇ · v)0 = 0 ∀v ∈ D

(∇ × ω + ∇∗p,∇∗q)D = (f ,∇∗q)D ∀q ∈ L2
0(Ω).

The norm-equivalence of the least-squares functional (30) implies that the bilinear form
corresponding to (32) is strongly coercive (V-elliptic) on X × X.

To discretize (31) we consider conforming finite element subspaces Ch ⊂ H(curl,Ω),
Dh

0 ⊂ D and S h ⊂ L2
0(Ω) and set Xh = Ch × Dh

0 × S h. Following the same arguments as
in [5] one can show that the stability bound in Theorem 2 continues to hold on Xh, i.e.,
the least-squares functional (30) remains norm-equivalent on Xh. As a result, the discrete
least-squares principle

(33) (ωh,uh, ph) = arg min
(ξh,vh,qh)∈Xh

J(ξh,vh, qh;f )

is well-posed and the discrete optimality system: seek (ωh,uh, ph) ∈ Xh such that

(34)

(
∇ × ωh + ∇∗ph,∇ × ξh

)
D

+
(
ωh − ∇∗ × uh, ξh

)
0

=
(
f ,∇ × ξh

)
D

∀ξh ∈ Ch(
∇∗ × uh − ωh,∇∗ × vh

)
0

+
(
∇ · uh,∇ · vh

)
0

= 0 ∀vh ∈ Dh
0(

∇ × ωh + ∇∗ph,∇∗qh
)
D

=
(
f ,∇∗qh

)
D

∀qh ∈ S h.

has a unique solution. Moreover, once a basis for Xh is selected, it is not hard to see
that (34) is equivalent to a linear algebraic system for the coefficient vector of (ωh,uh, ph)
having a symmetric and positive definite matrix.

In the next section we construct a conforming spectral element subspace of X. A no-
table feature of our approach is a choice of degrees of freedom, which allow to combine
spectral accuracy with the ability to decompose the differential operators in (34) into a
purely topological part and a metric dependent part. This should be contrasted with the
approaches in, e.g., [1, 17], which do not allow for such a separation.
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5. Mimetic spectral element method

Classical low-order mimetic methods [7] admit factorization of the discrete differential
operators into a purely topological and a metric dependent parts. The purely topological
part is independent of the size or shape of the mesh or the order of the basis and is responsi-
ble for ensuring the validity of vector calculus identities such as ∇×∇ = 0 and ∇ ·∇× = 0.
Conversely, the metric-dependent part is responsible for the accuracy of the scheme but
it depends on the size and shape of the mesh and the order of the basis. Factorization of
discrete operators into such parts induces analogous factorizations of their algebraic repre-
sentations into products of Gramm-like matrices of the finite element bases and incidence
matrices, whose entries contain only the numbers 1,−1 and 0. Among other things, we use
these matrix factorizations to prove the mimetic properties of our method.

Although, besides aiding in the proof of mimetic properties, such factorizations can
bring about significant other computational benefits, very few attempts had been made to
extend such ideas to higher-order representations. Apart from [3, 23, 24, 27, 28] , the
authors are not aware of any other work in that direction.

In this section we will present the spectral element basis functions which span the finite
dimensional spaces Ch, Dh

0, Dh and S h, as well as the equivalent matrix form of (34)
for the two-dimensional case. Using this algebraic representation we derive the discrete
conservation properties such as local mass conservation and the fact that the integrated
vorticity will always vanish by using the above mentioned factorizations.

Similar ideas can be found in Tonti, [31, 32], Bossavit, [12, 13], Desbrun et al., [18],
Bochev et al, [3, 7], Lipnikov et al, [26], Seslija et al., [30], Bonelle and Ern, [11], Lemoine
et al., [25], Kreeft et al., [23, 24], Palha et al., [27] and references therein.

5.1. One dimensional basis spectral basis functions. Consider the interval [−1, 1] ⊂ R
and the Legendre polynomials, LN(ξ) of degree N, ξ ∈ [−1, 1]. The (N + 1) roots, ξi, of the
polynomial (1− ξ2)L′N(ξ) satisfy −1 ≤ ξi ≤ 1. Here L′N(ξ) is the derivative of the Legendre
polynomial. The zeros are called the Gauss-Lobatto-Legendre (GLL) points. Let hi(ξ) be
the Lagrange polynomial through the GLL points such that

(35) hi(ξ j) =

 1 if i = j

0 if i , j
i, j = 0, . . .N .

The explicit form of the Lagrange polynomials in terms of the Legendre polynomials is
given by

(36) hi(ξ) =
(1 − ξ2)L′N(ξ)

N(N + 1)LN(ξi)(ξi − ξ)
.

Let f (ξ) be defined for ξ ∈ [−1, 1] by

(37) f (ξ) =

N∑
i=0

aihi(ξ) .

Using property (35) we see that f (ξ j) = a j, so the expansion coefficients in (37) coincide
with the value of f in the GLL nodes. We will refer to this expansion as a nodal expansion.
The nodal basis functions hi(ξ) are polynomials of degree N.

The derivatives of the nodal basis functions define another set of functions ei(ξ) given
by

(38) ei(ξ) = −

i−1∑
k=0

dhk(ξ)
dξ

dξ = −

i−1∑
k=0

dhk(ξ) .
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The functions ei(ξ) are polynomials of degree (N − 1), which satisfy [22, 24]

(39)
∫ ξ j

ξ j−1

ei(ξ) =

 1 if i = j

0 if i , j
i, j = 1, . . .N .

Similar to (37) consider an expansion

(40) f (ξ) =

N∑
i=1

biei(ξ) ,

in terms of the functions ei. Using (39) we find that∫ ξ j

ξ j−1

f (ξ) = b j .

that is, the expansion coefficients bi in this case correspond to the integral of f along
the edge [ξi−1, ξi]. Accordingly, we call ei edge functions and refer to (40) as an edge
expansion, see for instance [3, 23, 24, 27] for examples of nodal and edge expansions.

The relationship (38) between nodal and edge functions implies that the derivative of a
nodal expansion (37) is an edge expansion (40) [22, 24], that is,

(41) f ′(ξ) =

N∑
i=0

aih′i(ξ) =

N∑
i=1

(ai − ai−1)ei(ξ) .

Remark 1. Note that the set of polynomials {h′i}, i = 0, . . . ,N is linearly dependent and
therefore does not form a basis, whereas the set {ei}, i = 1, . . . ,N is linearly independent
and therefore forms a basis for the derivatives of the nodal expansion (37).

For all integrals we use Gauss-Lobatto integration

(42)
∫ 1

−1
f (ξ) dξ ≈

N∑
i=0

f (ξi)wi ,

where the Gauss-Lobatto weight are given by

(43) wi =
2

N(N + 1)L2
N(ξi)

for i = 0, . . . ,N .

Gauss-Lobatto integration is exact for polynomials of degree 2N − 1, see [14].

5.2. Two-dimensional expansions. Consider [−1, 1]2 ⊂ R2. We will use tensor products
of nodal and edge functions to construct conforming finite dimensional subspaces Ch, Dh,
Dh

0 and S h of H(curl,Ω), H(div,Ω), D and L2(Ω), respectively. Let (ξi, η j) be the GLL
points in ξ- and η-direction. We will first describe the finite dimensional spaces and the
primal vector operations, ∇× and ∇·, between these space.

5.2.1. Spaces and primal vector operators. We define the curl-conforming space Ch as
the span of the basis set {ci j(ξ, η)}, i, j = 0, . . . ,N, where ci j(ξ, η) = hi(ξ)h j(η). Thus an
element ωh(ξ, η) ∈ Ch of this space has the form

(44) ωh(ξ, η) =

N∑
i=0

N∑
j=0

ωi, jci j(ξ, η) = [c00(ξ, η) . . . cNN(ξ, η)]



ω0,0

...

ωN,N


.
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From (35) it follows thatωi, j = ω(ξi, η j). We will use the compact notation ~ω = [ω0,0, . . . , ωN,N]T

to denote the coefficient vector of ωh. Taking the curl of ωh we obtain, using (41)

∇ × ωh =

( ∑N
i=0

∑N
j=1(ωi, j − ωi, j−1)di j(ξ, η)∑N

i=1
∑N

j=0(ωi−1, j − ωi, j)d ji(η, ξ)

)

=

[
d01(ξ, η) . . . dNN(ξ, η) 0 . . . 0

0 . . . 0 d01(η, ξ) . . . dNN(η, ξ)

]
E1,0



ω0,0

...

ωN,N


.(45)

where di j(ξ, η) = hi(ξ)e j(η), di j(η, ξ) = hi(η)e j(ξ) and E1,0 is an incidence matrix containing
the values −1, 0 and 1. This incidence matrix is very sparse.

We define the div-conforming space Dh as the span of {di j(ξ, η)} × {dlk(η, ξ}, for i, l =

0, . . . ,N and j, k = 1, . . . ,N. The identity (45) shows that ∇× : Ch → Dh. An element
f h ∈ Dh, has the form

f h(ξ, η) =

 ∑N
i=0

∑N
j=1 f ξi, jdi j(ξ, η)∑N

i=1
∑N

j=0 f ηi, jd ji(η, ξ)



=

[
d01(ξ, η) . . . dNN(ξ, η) 0 · · · 0

0 . . . 0 d01(η, ξ) . . . dNN(η, ξ)

]


f ξ0,1
...

f ξN,N
f η1,0
...

f ηN,N


.(46)

Subsequently we will use the notation ~f = [ f ξ0,1, . . . , f ξN,N , f η1,0, . . . , f ηN,N]T for the coefficient
vector of a function f h ∈ Dh.

Since both ∇ × ωh ∈ Dh and f h ∈ Dh, the equation ∇ × ωh = f h is dimensionally
consistent. After equating (45) and (46), we see that ∇ × ωh = f h is equivalent to a linear
system

(47) E1,0



ω0,0

...

ωN,N


=



f ξ0,1
...

f ξN,N
f η1,0
...

f ηN,N


,

that involves the topological incidence matrix but not the basis functions. The sparse inci-
dence matrix E1,0 thus gives the purely topological part of ∇×, i.e., the part of this operator
that remains the same so long as the mesh connectivity does not change. All metric prop-
erties, size and shape of the grid and the order of the scheme, are contained in the basis
functions.
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The space Dh
0 is obtained from Dh by setting all fluxes over the outer boundary to zero.

An element uh ∈ Dh
0 is therefore represented as

uh(ξ, η) =

 ∑N−1
i=1

∑N
j=1 uξi, jdi j(ξ, η)∑N

i=1
∑N−1

j=1 uηi, jd ji(η, ξ)



=

[
d11(ξ, η) . . . dN−1N(ξ, η) 0 . . . 0

0 . . . 0 d11(η, ξ) . . . dN−1,N(η, ξ)

]


uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


.(48)

For uh ∈ Dh
0 the expansion of ∇ · uh is given by

∇ · uh =

N∑
i=1

N∑
j=1

(
uξi, j − uξi−1, j + uηi, j − uηi, j−1

)
si j(ξ, η)

= [s11(ξ, η) . . . sNN(ξ, η)]E2,1



uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


,(49)

where si j(ξ, η) = ei(ξ)e j(η), uξ0, j = uξN, j = uηi,0 = uηi,N = 0 in the first equality, and we have
used (41). The incidence matrix E2,1 is a sparse matrix which only contains −1, 0 and
1. Similar to E1,0, this matrix gives the topological part of the divergence operator. As a
result, the conservation of mass statement, ∇ ·uh = 0, reduces to the following relation for
the expansion coefficients of uh

(50) E2,1



uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


= 0 .

Finally, we define S h to be the span of {si j(ξ, η)} for i, j = 1, . . . ,N. This space equals
the range of the discrete divergence acting on Dh

0, i.e., ∇ · Dh
0 = S h. Consequently, we use

S h to approximate the space L2(Ω). The functions in S h have the form

(51) ph(ξ, η) =

N∑
i=1

N∑
j=1

pi, jsi j(ξ, η) .

We now have the conforming finite dimensional function spaces Ch ⊂ H(curl,Ω), Dh ⊂

H(div,Ω), S h ∈ L2(Ω), and Dh
0 ⊂ D, such that Ch ∇×→ Dh ∇·→ S h forms an exact sequence.
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5.3. Inner products. In this section we derive the algebraic representations of the inner
products acting on the discrete spaces introduced earlier. These representations are also
required to obtain the algebraic representations of the adjoint operators from Definition 1.

5.3.1. Inner-product on Ch. Let ξh,ω ∈ Ch, then the L2-inner product in Ch is given by

(52)
(
ξh,ωh

)
0

=

∫ 1

−1

∫ 1

−1
ξhωh dξdη = ~ξTMC~ω ,

whereMC is the (N + 1)2 × (N + 1)2 Gramm matrix of the basis {ci j(ξ, η)}.
If we evaluate the integrals in this mass matrix using GLL integration, (42), and use

(35), we see that MC is a diagonal matrix with the product of the integration weights (43)
on the diagonal.

5.3.2. Inner-product on Dh. For uh,vh ∈ Dh the inner-product is given by

(53)
(
uh,vh

)
0

=

∫ 1

−1

∫ 1

−1
(uh,vh) dξdη = ~vTMD~u .

Here the matrix MD corresponds to the Gramm matrix of the basis functions {di j} × {dkl}.
This matrix is a 2N(N + 1) × 2N(N + 1) block diagonal matrix, but it is not diagonal.

5.3.3. Inner-product on Dh
0. The mass matrixMD0 on Dh

0 is obtained fromMD by remov-
ing the row and columns which correspond to the prescribed zero fluxes on the boundary.
MD0 is then a 2N(N − 1) × 2N(N − 1) block diagonal matrix.

5.3.4. Inner product in weak L2-norm. In the weak L2-norm ‖ · ‖D we project the degrees
of freedom of ~f ∈ Dh onto the degrees of freedom in Dh

0. So we look for vector of degrees
of freedom ~u f ∈ Dh

0 such that

~vTMD0~u f = ~vTMD0D ~f .

The mass matrixMD0D is obtained fromMD by eliminating the rows which correspond to
the prescribed zero fluxes in D0. The matrixMD0D is non-square. The degrees of freedom
for the projected degrees of freedom ~u f are then given by

~u f = M−1
D0
MD0D ~f .

In particular, we have that the projection of the degrees of freedom of ∇ × ωh on D0 is
given by

(54) M−1
D0
MD0DE

(1,0)~ω .

5.3.5. Inner-product on S h. The mass matrixMS for S h corresponds to the Gramm matrix
of the basis si j(ξ, η), i, j = 1, . . . ,N given in (51). The mass matrixMS is not diagonal, but
diagonal dominant.

5.4. Finite dimensional adjoint operators. Using the algebraic expressions for the pri-
mary operators ∇× and ∇· in terms of the incidence matrices given in Section 5.2.1, and
the algebraic forms of the inner products in Section 5.3, we can easily obtain the algebraic
forms of the adjoint operators in Definition 1.

Let ξh ∈ Ch, then ∇ × ξh ∈ Dh, if we take the inner-product with any vh ∈ Dh
0 we have

in terms of the expansion coefficients of ~ξ and ~v(
vh,∇ × ξh

)
0

= ~vTMD0DE
1,0~ξ = ~vTMD0DE

1,0M−1
C MC~ξ

= (M−1
C E

1,0T
MT

D0D~v)TMC~ξ =
(
∇∗ × vh, ξh

)
0
,(55)
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where we used the fact that the tangential velocity of vh is zero for v ∈ Dh
0 ⊂ D. It follows

that the algebraic form of ∇∗ × vh is given by

(56) M−1
C E

1,0T
MT

D0D~v .

Let vh ∈ Dh
0 then ∇ · vh ∈ S h. If we take the inner-product with any p ∈ S h, we obtain

in terms of the expansion coefficients of ~v and ~p

(ph,∇ · vh)0 = ~pTMSE
2,1~v = ~pTMSE

2,1M−1
D0
MD0~v

= (M−1
D0
E2,1T
MS ~p)TMD0~v = (−∇∗ph,vh)0 ,(57)

where again the boundary integral vanishes for vh ∈ Dh
0 ⊂ D. Therefore, the algebraic

form of ∇∗ph ∈ Dh
0 is given by

(58) −M−1
D0
E2,1T
MS ~p .

5.5. Mimetic least-squares for the Stokes problem. With the conforming finite dimen-
sional spaces and the primary and adjoint vector operations between these spaces, we are
now in the position to implement (34).

Using the algebraic forms of the inner products and operators derived in the previous
subsections it is not difficult to see that the discrete Euler-Lagrange equation (34) is equiv-
alent to a linear algebraic system

(59) S~x = rhs ,

where S is 3 × 3 block matrix given by
(60)
E1,0T
MT

D0DM
−1
D0
MD0DE

1,0+MC −E1,0T
MT

D0D −E1,0T
MT

D0DM
−1
D0
E2,1T
MS

−MD0DE
1,0 MD0DE

1,0M−1
C E

1,0T
MT

D0D+E2,1T
MSE

2,1 0
−MSE

2,1M−1
D0
MD0DE

1,0 0 MSE
2,1M−1

D0
E2,1T
MS

 ,
~x =

 ~ω
~u
~p

 ,
and

rhs =


E1,0T
MT

D0DM
−1
D0
MD0D ~f

0
−MSE

2,1M−1
D0
MD0D ~f

 .
We see that this discrete system involves only mass matrices and incidence matrices re-
lated to the various spaces and operations between these spaces. We started this section
by stating that a mimetic method aims to decompose a PDE in a purely topological part
and a metric dependent part. The mimetic least-squares formulation precisely achieves
this, where the topological part is represented by the incidence matrices and the metric
dependent part by the mass matrices.

The discrete least-squares system matrix (59) can be factorized as

ATMA~x = ATM~b ,

where

A =


I −M−1

C E
1,0T
MT

D0D 0
M−1

D0
MD0DE

1,0 0 −M−1
D0
E2,1T
MS

0 E2,1 0

 ,
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and

M =

 MC 0 0
0 MD0 0
0 0 MS

 and ~b =


0

M−1
D0
MD0D ~f
0

 .
Note that the matrix A contains all the operations we introduced in this section: In the first
row we see the operator M−1

C E
1,0T
MT

D0D which by (56) is the discrete ∇∗×. In the second
row we haveM−1

D0
MD0DE

1,0 which by (54) is the projection of ∇×ωh onto D0. The operator
−M−1

D0
E2,1T
MS is by (58) the discrete ∇∗ and in the last row we have E2,1 which by (50) is

the discrete divergence operator ∇· acting on D0.
If ~x is a solution of the system A~x = ~b, then ~x is also a solution of (59) and by the

uniqueness of the least-squares formulation it is the only solution of (59). Note that the
systemMA~x = M~b was solved in [23].

Theorem 3. The solution of the least-squares formulation (59) is locally mass conserving.

Proof. If ~x is a solution of (59) then it also solves A~x = ~b. In particular, this means
that E2,1~u = 0. But according to (49) and (50) this equation is precisely the algebraic
equivalent of ∇ · uh = 0, i.e., the velocity solution of the least-squares method (34) is
exactly divergence-free. �

Theorem 4. Let ωh be the solution of the least-squares formulation (59), then∫
Ω

ωh dΩ = 0 .

Proof. In 2D at the continuous level we have that ω = ∇ × u implies that∫
Ω

ω dΩ =

∫
Ω

∇ × u dΩ =

∫
∂Ω

u × ndS = 0 ,

if u × n = 0 along the boundary. In the finite dimensional case, the same result follows
by taking for ξh the constant function ξh = 1 in (34) and vh = 0 and qh = 0. Then the
least-squares formulation reduces to

(1,ωh)0 =

∫
Ω

1 · ωhdS = 0 .

Or, in terms of (59),

(61) (1, . . . , 1)MC


ω0,0
...

ωN,N

 =

N∑
i=0

N∑
j=0

ωi, jwiw j = 0 ,

because by Section 5.3.1MC is a diagonal matrix which contains the products of the GLL-
integration weights (43) on its diagonal. Therefore (61) shows that the numerical integral
of ωh over the domain is zero, where ωh is a polynomial of degree N in the ξ- and η-
direction. Since GLL-integration is exact for polynomials up to 2N − 1, (61) implies that∫

Ω

ωh dΩ = 0 .

�

6. Numerical results

In this section we use several manufactured solution examples to asses the performance
of the spectral mimetic least-squares method.
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6.1. Test case 1. Consider the Stokes problem defined on the domain Ω = [−1, 1]2 with
u = 0 along the boundary. We take as exact divergence-free velocity field
(62)

u(x, y) =

(
−4y(1 − y2)(1 − x2)2 sin(2π(x + y)) + 2π(1 − x2)2(1 − y2)2 cos(2π(x + y))
4x(1 − x2)(1 − y2)2 sin(2π(x + y)) − 2π(1 − x2)2(1 − y2)2 cos(2π(x + y))

)
.

For the right hand side function f we take f = ∇ × ∇∗ × u. In this case the corresponding
exact pressure field is constant. The problem is solved on one spectral element with varying
polynomial degree N. For such a small problem system (59) can be solved with a direct
solver, where we used direct inverses of the mass matrices which appear in the system.

N 4 6 8 10 12 14 16 18

J(ωh,uh, ph;f ) 1.6 · 105 1.5 · 105 4.8 · 104 4.0 · 103 1.0 · 102 1.1 · 100 5.7 · 10−3 1.6 · 10−5

1
2 ‖ω

h − ∇∗ ×uh‖20 3.6 · 10−26 9.1 · 10−27 1.1 · 10−25 4.1 · 10−25 3.1 · 10−25 5.0 · 10−25 9.8 · 10−25 1.2 · 10−−24

1
2 ‖∇ × ω

h + ∇∗p − f ‖2
D

1.6 · 105 1.5 · 105 4.8 · 104 4.0 · 103 1.0 · 102 1.1 · 100 5.7 · 10−3 1.6 · 10−5

1
2 ‖∇ ·u

h‖20 6.6 · 10−26 1.4 · 10−26 1.4 · 10−25 3.1 · 10−25 3.7 · 10−25 5.7 · 10−25 1.2 · 10−24 1.3 · 10−24

‖ωh − ω‖2C 3.3 · 105 3.1 · 105 9.6 · 104 8.0 · 103 2.1 · 102 2.2 · 100 1.1 · 10−2 3.2 · 10−5

‖uh −u‖2div 5.1 · 101 3.5 · 101 7.4 · 100 6.3 · 10−1 1.7 · 10−2 1.9 · 10−4 1.0 · 10−6 3.0 · 10−9

‖ph − p‖2
D

1.0 · 104 8.1 · 102 9.7 · 100 7.8 · 10−1 1.1 · 10−2 6.6 · 10−4 1.8 · 10−7 2.6 · 10−10

Table 1. Convergence results for Test case 1 with increasing polynomial degree

The first four rows in Table 1 show the value of the least-squares functional and the
residuals that make it up for increasing polynomial degree N. The last three rows give the
errors in the vorticity, velocity and the pressure, measured in ‖ · ‖2C , ‖ · ‖div, and ‖ · ‖2

D
-norm,

respectively.
The first thing to note is that conservation of mass is satisfied up to machine precision

for all polynomial degrees. This result confirms Theorem 3.
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Figure 1. Convergence of the least-squares functional J and the total
error ‖ωh−ω‖2C +‖uh−u‖2div +‖ph−p‖2

D
as a functional of the polynomial

degree N for Test case 1.
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Test case 1 shows that the least-squares functional is dominated by the residual of the
momentum equation. In the total error the weak H(curl,Ω)-norm of the vorticity dom-
inates the total error. The ratio of the least-squares functional value over total error is
approximately 0.5.

For a well-posed least-squares formulation the convergence rate of the least-squares
functional should be equal to the convergence rate of the total error. In Figure 1 the con-
vergence of the least-squares functional and the total error are plotted as a function of the
polynomial degree N and both quantities converge at the same (exponential) rate.

6.2. Test case 2. Consider the Stokes problem defined on the domain Ω = [−1, 1]2 with
u = 0 along the boundary. The right hand side function f in this case is given by

(63) f (x, y) =

(
π cos(π(x + y))
π cos(π(x + y))

)
.

This particular flow corresponds to a pressure field given by

(64) p(x, y) = sin(π(x + y)) + C ,

where C is an arbitrary constant. The velocity and vorticity for this problem are identically
zero.

N 4 6 8 10 12 14 16 18

J(ωh,uh, ph;f ) 8.1 · 100 1.8 · 10−1 8.5 · 10−4 1.2 · 10−6 6.0 · 10−−10 1.8 · 10−13 2.9 · 10−17 6.0 · 10−17

1
2 ‖ω

h − ∇∗ ×uh‖20 8.4 · 10−29 4.5 · 10−27 1.0 · 10−25 4.1 · 10−24 1.4 · 10−22 4.2 · 10−22 5.6 · 10−22 7.1 · 10−21

1
2 ‖∇ × ω

h + ∇∗p − f ‖2D 8.1 · 100 1.8 · 10−1 8.5 · 10−4 1.2 · 10−6 6.9 · 10−10 1.8 · 10−13 2.9 · 10−17 6.0 · 10−17

1
2 ‖∇ ·u

h‖20 1.2 · 10−28 8.9 · 10−27 1.3 · 10−25 5.5 · 10−24 2.4 · 10−22 6.3 · 10−22 7.1 · 10−22 1.1 · 10−20

‖ωh − ω‖2C 3.2 · 10−26 1.4 · 10−23 4.3 · 10−22 4.2 · 10−20 5.0 · 10−18 1.9 · 10−17 2.4 · 10−17 5.5 · 10−16

‖uh −u‖2div 3.5 · 10−29 4.5 · 10−28 7.4 · 10−27 1.9 · 10−25 1.3 · 10−24 3.6 · 10−24 1.2 · 10−23 1.8 · 10−22

‖ph − p‖2
D

1.6 · 101 3.7 · 10−1 1.7 · 10−3 2.4 · 10−6 1.4 · 10−9 3.7 · 10−13 8.7 · 10−17 7.9 · 10−16

Table 2. Convergence results for Test case 2 with increasing polynomial degree

The results for test case 2 are listed in Table 2. We see that for all polynomial degrees
we can capture exactly the zero velocity and vorticity field (up to machine accuracy) and
therefore also mass conservation is satisfied up to machine precision.

In Test case 2, the least-squares functional is again dominated by the residual of the
momentum equation, while the total error in this case is dominated by the weak semi-
norm ‖p − ph‖D. The ratio of the least-squares functional over the total error is again
approximately equal to 0.5 for all polynomial degrees.

For a well-posed least-squares formulation the least-squares functional converges at the
same rate as the total error. In Figure 2 both the least-squares functional and the total error
are plotted as a function of the polynomial degree and both quantities converge again at
the same (exponential) rate until N = 16. For N = 16 all errors and residuals have reached
zero machine accuracy, O(10−17). Beyond N = 16 the truncation error becomes visible
and the least-squares functional and the total error stall or start to increase slightly as can
be seen in Figure 2.

6.3. Test case 3. In Test case 1 we used a divergence-free right hand side function, while
in Test case 2 the right hand side function was irrotational. In this test case, we combine
these two cases by using the exact velocity field from Test case 1 and the exact pressure
field from Test case 2. The corresponding right hand side function is then given by

(65) f = ∇ × ∇∗ × u + ∇∗p .
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Figure 2. Convergence of the least-squares functional J and the total
error ‖ωh−ω‖2C +‖uh−u‖2div +‖ph−p‖2

D
as a functional of the polynomial

degree N for Test case 2.

The results of this test case are displayed in Table 3

N 4 6 8 10 12 14 16 18

J(ωh,uh, ph;f ) 1.6 · 105 1.5 · 105 4.8 · 104 4.0 · 103 1.0 · 102 1.1 · 100 5.7 · 10−3 1.6 · 10−5

1
2 ‖ω

h − ∇∗ ×uh‖20 3.7 · 10−26 1.1 · 10−26 4.7 · 10−25 3.1 · 10−24 2.1 · 10−22 8.4 · 10−21 1.2 · 10−21 9.0 · 10−21

1
2 ‖∇ × ω

h + ∇∗p − f ‖2D 1.6 · 105 1.5 · 105 4.8 · 104 4.0 · 103 1.0 · 102 1.1 · 100 5.7 · 10−3 1.6 · 10−5

1
2 ‖∇ ·u

h‖20 6.2 · 10−26 1.8 · 10−26 4.6 · 10−25 4.9 · 10−24 4.0 · 10−22 1.3 · 10−22 1.5 · 10−21 5.9 · 10−21

‖ωh − ω‖2C 3.3 · 105 3.1 · 105 9.6 · 104 8.0 · 103 2.1 · 102 2.2 · 100 1.1 · 10−2 3.2 · 10−5

‖uh −u‖2div 5.1 · 101 3.5 · 101 7.3 · 100 6.3 · 10−1 1.7 · 10−2 1.9 · 10−4 1.0 · 10−6 3.0 · 10−9

‖ph − p‖2
D

1.0 · 104 8.2 · 101 9.7 · 100 7.8 · 10−1 1.1 · 10−2 6.6 · 10−5 1.8 · 10−7 2.6 · 10−10

Table 3. Convergence results for Test case 3 with increasing polynomial degree

The convergence results for Test case 3 are very similar to those of Test case 1. While all
residuals go to zero with increasing polynomial degree, conservation of mass, ∇ · uh = 0,
is satisfied up to machine accuracy for all polynomial degrees.

In these 3 test cases the no-slip condition is enforced weakly without the need for ad-
justable parameters to enforce the no-slip constraint which is usually employed in least-
squares finite element methods.

Theorem 4 predicts that the total integrated vorticity of the least-squares approximation
will be zero. For all three test cases given above the total integrated vorticity is determined
by GLL-integration and the results are listed in Table 4. That the integrated vorticity in Test
case 2 is approximately equal to zero is not surprising because in this case the exact and
numerical vorticity are zero. But for test cases 1 and 2 the vorticity in the domain ranges
from −75 to +75. In all cases the integrated vorticity is zero up to machines precision,
independent of the polynomial degree N, i.e. independent of how accurate the numerical
approximation ωh is.
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Case\N 4 6 8 10 12 14 16 18

1 −2.8 · 10−14 6.0 · 10−14 6.8 · 10−14 −9.1 · 10−13 2.2 · 10−13 2.1 · 10−13 −1.1 · 10−12 3.0 · 10−14

2 5.4 · 10−16 −2.9 · 10−16 1.5 · 10−14 −1.2 · 10−13 1.0 · 10−12 −4.7 · 10−13 6.6 · 10−12 −1.3 · 10−11

3 −2.1 · 10−13 −3.7 · 10−14 −9.5 · 10−13 −5.4 · 10−13 9.1 · 10−13 −7.5 · 10−13 −1.7 · 10−12 −5.7 · 10−12

Table 4. Integrated vorticity over the domain Ω = [−1, 1]2 for Test cases
1,2 & 3 for various polynomial degrees N.

7. Discussion

In this paper we developed a mimetic least-squares spectral element formulation for
Stokes flow with no-slip (velocity) boundary conditions u = 0 along the boundary of the
domain. A crucial ingredient in the analysis is the Hodge-Morrey-Friedrichs decompo-
sition of vector fields with u = 0 along the boundary into a divergence-free part and an
irrotational part which both satsify u = 0 along the boundary.

A non-standard stability proof for well-posedness is required in order to bound the
momentum equation in H(div,Ω) from below to establish well-posedness of the least-
squares formulation.

Conforming finite dimensional function spaces have been constructed in a spectral ele-
ment context as well as the primary and adjoint operators between these spaces.

All these operations can be represented by operations on the expansion coefficients, i.e.
on the degrees of freedom in the various functions spaces. These operations can be divided
in topological operations by means of incidence matrices and metric-dependent operations
represented by mass matrices.

Although the no-slip condition is enforced weakly in the new formulation, this proce-
dure does not involve any adjustable, mesh-dependent parameters.

We prove that for the mimetic least-squares formulation mass is exactly conserved.
Numerical tests for non-trivial right-hand side functions confirms exact mass conservation
for all polynomial degrees. Furthermore, we proved that the integrated vorticity of the
least-squares solution ωh is equal to zero. This result is also confirmed by the test cases.
The least-squares functional is dominated by the residual in the momentum equation. The
residuals of mass conservation and the vorticity-velocity relation are zero up to machine
accuracy.

Future work will focus on multi-element methods, curvilinear grids and error estimates
based on the current least-squares formalism.
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